

MRK Institute of Technology Nattarmangalam Village, Kattumannarkoil – 608 301. Cuddalore Dt, Tamilnadu. £h: 04144 - 260270, 262728 Fax: 04144 - 262728 1 : +91 - 9487691969

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

An ISO 9001: 2008 Certified Institution

SEM	SUBJECT CODE	SUBJECT NAME	COURSE ID	COURSE OUTCOME
II	MA3303	PROBABILITY AND COMPLEX FUNCTIONS	CO 1	Understand the fundamental knowledge of the concepts of probability and have knowledge of standard distributions which can describe real life phenomenon.
			CO 2	Understand the basic concepts of one and two dimensional random variables and apply in engineering applications.
			CO 3	To develop an understanding of the standard techniques of complex variable theory in particular analytic function and its mapping property.
			CO 4	To familiarize the students with complex integration techniques and contour integration techniques which can be used in real integrals.
			CO5	To acquaint the students with Differential Equations which are significantly used in engineering problems.
	EE3301	ELECTROMAGNETIC FIELDS	CO 1	Explain Gradient, Divergence, and Curl operations on electromagnetic vector fields.
			CO 2	Explain electrostatic fields, electric potential, energy density and their applications.
			CO 3	Calculate magneto static fields, magnetic flux density, vector potential
II			CO 4	Explain different methods of emf generation and Maxwell's equations

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai) An ISO 9001: 2008 Certified Institution

MRK Institute of Technology Nattarmangalam Village, Kattumannarkoil – 608 301. Cuddalore Dt, Tamilnadu. Phi: 04144 – 260270, 262728 Fax: 04144 – 262728 : : +91 – 9487691969

CERI

150 9001

(Approved by AICTE,

An ISO 9001: 2008 Certified Institution

Kattumannarkoil - 608 301. Ph: 04144 - 260270. 262728

CERI

ISO 9001

(Approved by AICTE, New Delhi & Affiliated to Anna University, Chennal) An ISO 9001: 2008 Certified Institution MRK Institute of Technology Natiarmangalam Village, Katumannarkoil – 608 301. Cuddalore Dt, Tamihadu. Ph: 04144 – 260270, 262728 Fax: 04144 – 262728 £ax: 04144 – 262728 £ : +91 - 9487691969

	DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING					
			CO 6	Apply appropriate hash functions that result in a collision free scenario		
				for data storage and retrieval.		
	EE3401	TRANSMISSION AND DISTRIBUTION	CO 1	Understand the structure of power system, computation of transmission		
				line parameter for different configurations and the impact of skin and		
				proximity effects.		
			CO 2	Model the transmission lines to determine the line performance and to		
				understand the impact of Ferranti effect and corona on line performance.		
IV			CO 3	Do Mechanical design of transmission lines, grounding and to		
				understand about the insulators in transmission system.		
			CO 4	Design the underground cables and understand the performance analysis		
				of underground cable.		
			CO5	Understand the modelling, performance analysis and modern trends in		
				distribution system.		
	EE3402	LINEAR INTEGRATED CIRCUITS	CO 1	Explain monolithic IC fabrication process		
			CO 2	Explain the fabrication of diodes, capacitance, resistance, FETs and PV		
				Cell.		
			CO 3	Analyze the characteristics and basic applications (inverting/non-		
				inverting amplifier, summer, differentiator, integrator, V/I and I/V		
				converter) of Op-Amp		
IV			CO 4	Explain circuit and applications of op-amp based instrumentation		
				amplifier, log/antilog amplifier, analog multiplier /divider, active filters,		
				comparators, waveform generators, A/D and D/A converters		
			CO5	Explain Functional blocks, characteristics and applications of Timer,		
				PLL, analog multiplier ICs.		
			CO 6	Explain the applications of ICs in Instrumentation amplifier, fixed and		
				variable voltage regulator, SMPS and function generator		

MRK Institute of Technology **MRK Institute of Technology** (Approved by AICTE, New Delhi & Affiliated to Anna University, Chennal)

Nattarmangalam Village, Kattumannarkoil - 608 301. Cuddalore Dt, Tamilnadu. Ph: 04144 - 260270. 262728 Fax: 04144 - 262728 : +91 - 9487691969

CERI

150 9001

An ISO 9001: 2008 Certified Institution

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

	CO 4	Acquire knowledge about the starting and speed control of induction
		motors.
	CO5	To gain knowledge about the basic principles and working of Single
		phase induction motors and Special Electrical Machines